Корзина
20 отзывов
+7 (495) 665-92-04
+7 (968) 824-40-28
+7 (930) 846-99-30
+7 (926) 601-11-11
  • picture 1
  • picture 2
  • picture 3

Теплоизоляция

Сортировка: в виде галереи в виде списка
товаров на странице:

Теплоизоляционными материалами называется разновидность строительных материалов, обладающих низкой теплопроводностью и предназначенных для тепловой изоляции зданий, сооружений, оборудования и трубопроводов.

Свойства теплоизоляционных материалов и изделий регламентированы ГОСТ.. Согласно ГОСТ, теплоизоляционные материалы классифицируют по форме и внешнему виду, структуре, виду исходного сырья, плотности, жесткости, теплопроводности, возгораемости.

I. По форме и внешнему виду материалы подразделяют на штучные изделия (плиты, блоки, кирпич, цилиндры, полуцилиндры, сегменты), рулонные и шнуровые (маты, шнуры, жгуты), рыхлые и сыпучие материалы (вата минеральная, стеклянная, вспученный перлит, вермикулит).

II. По структуре материалы и изделия бывают волокнистыми, ячеистыми и зернистыми.

III. По виду исходного сырья их делят на неорганические и органические (приложение).

Смеси из неорганических и органических материалов относятся к неорганическим, если количество последних в смеси превышает 50% по массе.

IV. По плотности материалы и изделия подразделяют на группы и марки:

 

Таблица 1

Классификация теплоизоляционных материалов

по плотности

 

ОНП

Особо низкой плотности

15,25,35,50,75 кг/м3

НП

Низкой плотности

100,125,150,175

СП

Средней плотности

200,225,250,300,350

Пл.

Плотные

400,450,500,600

 

 

V. По жесткости теплоизоляционные изделия подразделяют на указанные в таблице: относительное сжатие, %.

Классификация теплоизоляционных материалов

по жесткости

Таблица 2

Обозначение

Наименование

вида изделий

При удельной нагрузке КПа

2

40

100

М

Мягкие

>30

-

-

П

Полужесткие

6-30

-

-

Ж

Жесткие

6

-

-

ПЖ

Повышенной жесткости

-

10

-

Т

Твердые

-

-

10

 

VI. По теплопроводности материалы и изделия делят на классы.

Разделение материалов по теплопроводности показано в табл.3.

Классификация теплоизоляционных материалов

по теплопроводности

Таблица 3

Обозначение класса

Наименование класса

Теплопроводность при температуре 250с Вт/м0с

А

Низкой теплопроводности

0.06

Б

Средней теплопроводности

0,06-0,115

В

Повышенной теплопроводности

0,115-0,175

 

Основные свойства теплоизоляционных материалов

 

К функциональным свойствам теплоизоляционных материалов относятся пористость и теплофизические характеристики: теплопроводность, теплоемкость, температуропроводность, теплостойкость, т.е. те свойства, которые обеспечивают тепловую изоляцию.

Строительно-эксплуатационные свойства средняя плотность, физико-механические показатели, стойкость при действии влаги, морозостойкость и др., т.е. те свойства, которые обеспечивают долговечность материала, возможность транспортирования, монтаж.

Пористость материала – это показатель, характеризующийся объемом газа (воздуха) в единице объема материала, выраженное в %. Поры по размерам разделяют на макропоры с размером >0,2 мм, видимые невооруженным глазом, и микропоры, обнаруживаемые с помощью микроскопа.

Открытая и закрытая пористость составляют общую (истинную пористость)

Hп=(1-)·100%

Открытую пористость определяют экспериментально по заполнению пор водой.

Истинная пористость обусловливает не только теплофизические свойства материалов, но и его прочность, так как она определяет содержание твердой фазы.

Пористость выше определенного предела редко снижает прочностные и увеличивает деформативные показатели конгломерата, поэтому при ее увеличении всегда необходимо повышать прочность связки.

Для материалов с зернистой структурой типа насыпной теплоизоляции и с волокнистой структурой истинная пористость меняется в зависимости от прилагаемого давления, которое вызывает их сжатие и уплотнение.

Пористость материала увеличивают оптимизацией его структуры (технологические методы), а также изменением условий эксплуатации. В этом случае для зернистых и волокнистых материалов необходимо снизить эксплутационные нагрузки, которые уплотняют материал.

Соотношение между закрытой и открытой пористостью влияет на многие строительно-эксплутационные и теплофизические свойства. Открытая пористость увеличивает теплопроводность материалов и создает условия для проникновения внутрь изделий, газов и влаги. В результате этого возрастает теплоемкость, интенсифицируются процессы химической и физической коррозии, увеличивается средняя плотность изделия и капиллярный подсос. Также деструктивные процессы разрушают межпоровые перегородки, приводя к уменьшению закрытой и увеличению открытой пористости, это ускоряет разрушение материала, поэтому в технологии теплоизоляционных материалов стремятся обеспечить получение минимально открытой и максимально закрытой пористости.

На свойства материалов большое влияние оказывает форма пор; если поры имеют вытянутую форму, то материал может обладать анизотропией свойств, например, прочность материала больше, если поры вытянуты параллельно действующей нагрузке и меньше, если перпендикулярны; теплофизические характеристики в этом случае уменьшаются в обратной зависимости.

По возгораемости теплоизоляционные материалы делят на: несгораемые, трудно сгораемые и сгораемые.

В целом теплоизоляционные материалы и изделия имеют следующую общую техническую характеристику: 1) теплопроводность не более 0,175 Вт/м. гр при 250С; 2) среднюю плотность не более 600 кг/м3; 3) стабильные физико-механические и теплотехнические свойства; 4) не выделяют токсических веществ и пыли в количестве, превышающих предельно допустимые концентрации.

Для тепловой изоляции оборудования трубопроводов с температурой, изолируемой поверхности свыше 1000С, чаще всего применяют неорганические материалы.

Основным признаком теплоизоляционных материалов является большая пористость. Она определяет свойства материалов и является причиной их объединения в одну группу. С пористостью непосредственно связана средняя плотность. Критерием деления теплоизоляционных материалов на марки является их средняя плотность. Существуют следующие марки теплоизоляционных материалов: 15, 25, 35, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600.

При выборе теплоизоляционных материалов следует учитывать, что на долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов, входящих в конструкцию ограждения, оказывают существенное влияние многие эксплуатационные факторы. Это, в первую очередь, знакопеременный (зима-лето) температурно-влажностный режим «работы» конструкции и возможность капиллярного и диффузионного увлажнения теплоизоляционного материала, а также воздействие ветровых, снеговых нагрузок, механические нагрузки от хождения людей, перемещения транспорта и механизмов по поверхности кровли производственных зданий.

Поскольку теплоизоляционные материалы, применяемые в строительстве, «работают» в достаточно жестких условиях, к ним предъявляются повышенные требования. Прежде всего, коэффициент теплопроводности материала должен быть таков, чтобы материал, в условиях эксплуатации, мог обеспечить требуемое сопротивление теплопередачи в конструкции, при минимально возможной толщине теплоизоляционного слоя. Следовательно, предпочтение надо отдавать высокоэффективным материалам.

Кроме того, теплоизоляционные материалы должны обладать морозостойкостью (не менее 20-25 циклов), чтобы сохранять свои свойства без существенного снижения прочностных и теплоизоляционных характеристик до капитального ремонта здания, а также быть водостойкими, биостойкими, не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ. Плотность материала, применяемого для утепления, должна быть не более 250 кг/м3, иначе существенно возрастают нагрузки на конструкции, что нужно учитывать, при выборе материалов для ремонта ветхих строений.

Теплоизоляционные материалы обладают рядом теплотехнических свойств, знание которых необходимо для правильного выбора материала конструкции и проведения теплотехнических расчетов. Точность последних в значительной степени зависит от правильного выбора значений теплотехнических показателей. Какие же это показатели?

1. Средняя плотность - величина, равная отношению массы вещества ко всему занимаемому им объему. Средняя плотность измеряется в кг/м3. Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объeм занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м3, в зависимости от их назначения.

Известно, что чем меньше средняя плотность сухого материала, тем лучше его теплоизоляционные свойства при температурных условиях, в которых находятся ограждающие конструкции зданий. Чем меньше средняя плотность материала, тем больше его пористость. От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределенными мелкими замкнутыми порами.

2. Теплопроводность - передача тепла внутри материала вследствие взаимодействия его структурных единиц (молекул, атомов, ионов и т.д.) и при соприкосновении твердых тел. Количество теплоты, которое передается за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице, называется теплопроводностью (коэффициентом теплопроводности). Теплопроводность (l) измеряют в Вт/(мК). Методики и условия испытаний теплопроводности материалов в различных странах могут значительно различаться, поэтому при сравнении теплопроводности различных материалов необходимо указывать при каких условиях, в частности температуре, проводились измерения. На величину теплопроводности пористых материалов, каковыми являются теплоизоляционные материалы, оказывают влияние плотность материала, вид, размеры и расположение пор, химический состав и молекулярная структура твердых составных частей, коэффициент излучения поверхностей, ограничивающих поры, вид и давление газа, заполняющего поры. Однако преобладающее влияние на величину теплопроводности имеют его температура и влажность. Теплопроводность материалов возрастает с повышением температуры, однако гораздо большее влияние в условиях эксплуатации оказывает влажность.

3. Влажность - содержание влаги в материале. С повышением влажности теплоизоляционных (и строительных) материалов резко повышается их теплопроводность. Очень важной характеристикой теплоизоляционного материала, от которой зависит теплопроводность, является и сорбционная влажность , представляющая собой равновесную гигроскопическую влажность материала, при различной температуре и относительной влажности воздуха.

4. Водопоглощение - способность материала впитывать и удерживать в порах влагу при непосредственном соприкосновении с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое поглощает сухой материал при выдерживании в воде, отнесенным к массе сухого материала. Следует обратить внимание, что водопоглощение теплоизоляционных материалов отечественного производства и инофирм определяется по разным методикам. При выборе материала для конструкции рекомендуется обращать внимание на показатели, приведенные в ТУ, ГОСТ или рекламных проспектах (для материалов инофирм), и сравнивать их с требуемыми по условиям эксплуатации А и Б (приложения 3 СНиП II-3-79* Строительная теплотехника' ). Как правило, теплопроводность теплоизоляционных материалов в условиях А и Б на 15 – 25% выше, чем указано в стандартах для сухих материалов при температуре 25 0С. Значительно снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путем введения кремнийорганических добавок. Продукция инофирм, поставляемая на наш рынок, является гидрофобизированной, а отечественная за небольшим исключением является негидрофобизированной.

5. Морозостойкость - способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТах или ТУ.

6. К механическим свойствам теплоизоляционных материалов относят прочность (на сжатие, изгиб, растяжение, сопротивление трещинообразованию). Прочность - способность материалов сопротивляться разрушению под действием внешних сил, вызывающих деформации и внутренние напряжения в материале. Прочность теплоизоляционных материалов зависит от структуры, прочности его твердой составляющей (остова) и пористости. Жесткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами. В соответствии со СНиП II-26-99 «Кровли» (проект, действующий СНиП II-26-76) прочность на сжатие для теплоизоляционных материалов, применяемых в качестве основания под рулонные и мастичные кровли, является нормируемым показателем. Прочность теплоизоляционных материалов, которые могут применяться для утепления скатных крыш, не нормируется, поскольку теплоизоляция укладывается в обрешетку и не несет нагрузки от кровли.

7. На долговечность конструкции покрытия влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий) и его биологическая стойкость.

8. Теплоизоляционный материал для применения в покрытиях выбирается с учетом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении. Выбор теплоизоляционного материала в зависимости от типа кровельного покрытия определяется с учетом требований СНиП на кровли, пожарную безопасность и др.

Применение теплоизоляционных материалов в строительстве позволяет:

1) повысить его эффективность в целом и облегчить нагрузку на несущие конструкции, например, 1 т минераловатного утеплителя по теплоизолирующему эффекту заменяет 1,5 тыс. штук кирпича.

2) уменьшить потребность в цементе, стали, так, применение теплоизоляционных материалов в ограждающих конструкциях жилых панельных зданий позволяет уменьшить расход стали в 1,5-3 раза и цемента в 3 раза по сравнению со стенами без применения в них тепловой изоляции;

3) повысить индустриальность строительных работ за счет расширения диапазона получаемых сборных конструкций (например, применение панелей типа «сэндвич» позволяет сократить трудозатраты почти в 2 раза);

4) сократить транспортные расходы (перевозка легких конструкций в 5,6 раз дешевле);

5) сократить расход топлива на отопление зданий.

Теплоизоляционные материалы эффективно используются для изоляции трубопроводов.

Категории
+7 (495) 665-92-04
офис
+7 (968) 824-40-28
Александр
+7 (930) 846-99-30
Алексей
+7 (926) 601-11-11
Александр
+7 (977) 511-67-98
Алексей
ООО"Стратегический партнёр"
Россия Москва 127591, г.Москва, ул. Дубнинская, д.81, этаж.2, пом.5
Карта